Another Approach to Pairing Computation in Edwards Coordinates
نویسندگان
چکیده
The recent introduction of Edwards curves has significantly reduced the cost of addition on elliptic curves. This paper presents new explicit formulae for pairing implementation in Edwards coordinates. We prove our method gives performances similar to those of Miller’s algorithm in Jacobian coordinates and is thus of cryptographic interest when one chooses Edwards curve implementations of protocols in elliptic curve cryptography. The method is faster than the recent proposal of Das and Sarkar for computing pairings on supersingular curves using Edwards coordinates.
منابع مشابه
Faster Pairing Computation
This paper proposes new explicit formulas for the doubling and addition step in Miller’s algorithm to compute pairings. For Edwards curves the formulas come from a new way of seeing the arithmetic. We state the first geometric interpretation of the group law on Edwards curves by presenting the functions which arise in the addition and doubling. Computing the coefficients of the functions and th...
متن کاملFaster Computation of Tate Pairings
This paper proposes new explicit formulas for the doubling and addition step in Miller’s algorithm to compute the Tate pairing. For Edwards curves the formulas come from a new way of seeing the arithmetic. We state the first geometric interpretation of the group law on Edwards curves by presenting the functions which arise in the addition and doubling. Computing the coefficients of the function...
متن کاملFaster Computation of the Tate Pairing
This paper proposes new explicit formulas for the doubling and addition steps in Miller’s algorithm to compute the Tate pairing on elliptic curves in Weierstrass and in Edwards form. For Edwards curves the formulas come from a new way of seeing the arithmetic. We state the first geometric interpretation of the group law on Edwards curves by presenting the functions which arise in addition and d...
متن کاملPairing Computation on Edwards Curves with High-Degree Twists
In this paper, we propose an elaborate geometry approach to explain the group law on twisted Edwards curves which are seen as the intersection of quadric surfaces in place. Using the geometric interpretation of the group law we obtain the Miller function for Tate pairing computation on twisted Edwards curves. Then we present the explicit formulae for pairing computation on twisted Edwards curve...
متن کاملFault Attacks against the Miller's Algorithm in Edwards Coordinates
Initially, the use of pairings did not involve any secret entry. However in an Identity Based Cryptographic protocol, one of the two entries of the pairing is secret, so fault attack can be applied to Pairing Based Cryptography to nd it. In [18], the author shows that Pairing Based Cryptography in Weierstrass coordinates is vulnerable to a fault attack. The addition law in Edwards coordinates i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2008 شماره
صفحات -
تاریخ انتشار 2008